
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023797
TITLE: Reconfigurable Computing for High Performance Computing
Computational Science

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2007. High
Performance Computing Modernization Program: A Bridge to Future
Defense held 18-21 June 2007 in Pittsburgh, Pennsylvania

To order the complete compilation report, use: ADA488707

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023728 thru ADP023803

UNCLASSIFIED

Reconfigurable Computing for High Performance Computing Computational
Science

Song Jun Park, Brian Henz, and Dale Shires
US Army Research Laboratory (ARL), High Performance Computing Division, Aberdeen Proving

Ground, MD
{ song.jun.park, bhenz, dshires} @arl.army.mil

Abstract elements are tied together using fast interconnects or it

can also be covert and performed within the CPU itself

Parallel computing systems with thousands of through instruction-level parallelism. Because of the

processors are now common and more affordable due to various delays in performing complex mathematical

the focus on clustered commodity processors. However, operations and stalls waiting for memory accesses,
both market and physical factors are converging that will today's CPUs have the capacity to interweave instructions
limit the performance of these systems in the future. at each clock cycle and hence have numerous operations
Hardware advances over the past several decades have scheduled simultaneously. Finding these opportunities in

been empirically observed with remarkable precision to algorithms is complex and highly machine dependent

obey Moore's law, predicting an increase in transistor where the process is usually relegated to high-level

density by about a factor of two every eighteen months. language compilers.

Maintaining these improvements has become problematic Computational science and scientific computing are

as power dissipation and other size-limiting factors fields of study exploiting these computing systems for

become more pronounced at smaller feature size. various disciplines, have evolved and grown considerably
Reconfigurable computing, or heterogeneous computing, over the past decade. These areas have made great

is offering hope to the scientific computing community as advances using the increasing speed and performance of

a way to provide continued growth in computing parallel systems as they have increased their processor

capability. This paper discusses some of the hardware counts and CPU speeds at the individual level. However,
and software associated with this new technology. It also if the focus remains on using traditional computing
provides a discussion on the overall state of the architectures and software development paradigms, future

technology for use by computational scientists. This is growth and scalability into the realm of petaflop

done by exploring a sample problem related to bit- and computing with traditional computing architectures looks

integer-based applications, bleak. Note the ability to achieve anything close to
theoretical peak speeds has steadily declined.
Furthermore, software engineering proves to be very

1. Introduction difficult as the requirements to maintain portability and
efficiency coexist with the overall requirement of

High performance computing (HPC) is an evolving mapping to complex architectures.
field that usually involves the use of parallel computing Reconfigurable computing is an emerging area of
systems to solve difficult computational problems. interest to HPC that will overcome many of these
Scientific research performed by the Department of problems. Reconfigurable computing allows for the use
Defense (DoD) can be greatly enhanced through the use of flexible digital design fabrics to allow for greater
of these computing systems. HPC as a research field in processing power over traditional fetch-execute-store
itself and as a means to further scientific research had a architectures. However, programmability remains a
natural migration to parallel computing systems. This is barrier for effective deployment of this methodology to
somewhat obvious given that "The most powerful the general HPC community. This paper briefly discusses
computer at any fiven time must, by definition, be a the current conditions in the HPC community that have
parallel machine"[. led to an increased relevance for reconfigurable solutions.

Parallelism provides a way to overcome clock speed We discuss our experiences with the technology and how
limitations of serial processing units. This parallelism can it was used for a target application area dealing with bit-
be straightforward, where many distinct processing and integer-based computing.

0-7695-3088-5/07 $25.00 © 2007 IEEE 350

2. The State of HPC requirements of computational scientists. In general, it is
an attempt to blend custom hardware design with high-

Hardware advances over the past several decades level language approaches. The use of highly flexible

have been empirically observed with remarkable precision computer fabrics gives algorithm designers the ability to

to obey Moore's law (predicting an advance in scalar make substantial changes to both data and control paths:
performance by about a factor of two every eighteen "Reconfigurable computing is computer

months), but maintaining this rate has become processing with highly flexible computing

problematic as power dissipation and other size-limiting fabrics. The principal difference when

factors become more pronounced at smaller feature size. compared to using ordinary microprocessors is

Furthermore, the complex mix of memory bandwidth, the ability to make substantial changes to the

interconnection latencies, and general algorithm data path itself in addition to the control
scheduling at the compiler/processor level are all factors flowuse
increasing the difficulty of achieving the advertised Of course, these lofty descriptions have to find their
performance of massively parallel hardware, way into practical uses. This section discusses the

The challenges at producing viable code for faster hardware that is being used to achieve these goals. The
and more complex architectures are just as daunting, if technology has been in existence for some time and has
not more, than those found in the hardware design. The matured to the point of being useful for the HPC
difficulties range from job scheduling, task or domain community. We conclude this section by discussing the
decomposition, load balancing, and management of programming methodology for these systems and the
unwieldy data sets. Software engineering has become a complexity involved.
much more time-consuming task for the computational
scientist. Doubts about the ability of the message-passing 3.1. Hardware
model of parallelism to work well with petaflop
architectures have led several vendors to begin research A Field Programmable Gate Array (FPGA) is a
into new languages such as Chapel and X10 to target reconfigurable device composed of Configurable Logic
these next generation machines[2

]. While these Blocks (CLB) and programmable interconnects. An
approaches may prove effective, it is unclear how they FPGA is usually supplied as a stand-alone board or as a
might affect developmental cycles. It has been noted that component that can be plugged into a host. Two
successful HPC software development projects routinely manufacturers, Xilinx and Altera, have a majority of the
require a time span of about a decade[3

]. FPGA market. The actual FPGA board can come in a
The current state of HPC looks good at first glance wide variety of sizes with different internal and external

because of the tremendous computing capacity. interfaces. Figure 1 shows a simple FPGA training board
However, there is a widening gap in terms of capability, that connects through serial ports to a host computer. The
The gap is getting wider by the day as newer approaches board has LEDs and several switches and buttons that can
in hardware, such as the multi-core chip, make their be polled by the interface libraries. The actual FPGA on
appearance on the market. While the capacity is growing, this board is a Xilinx Spartan.
the capability (as found in the software) is still lacking.
Suggestions on how best to handle the new reality focus
largely on traditional software engineering practices to
lessen the risk of new hardware insertion and extend
application lifecycles 4 "

A promising approach to push HPC to the next level
is found by paying attention to both hardware and
software in a unified way. Reconfigurable computing
blends custom hardware design with high-level language
approaches to see the process as one unified endeavor.
This is a fundamentally different way of viewing HPC
that certainly requires more work, but the potential reward
is considerable.

3. Reconfigurable Computing for HPC 7-7

Reconfigurable computing is a rapidly maturing field Figure 1. A sample FPGA training board

that offers great hope for meeting the demanding

351

CLB can be programmed to implement any desired Software
logic functions that use a memory technology to store description of
desired output values. Programmable interconnects circuit
surround the individual logic blocks and allows for user- N. (VHDL)
defined connections. Thus, a combination of configurable 1
logic blocks and programmable interconnects is able to + 0
create any logic network. Figure 2 illustrates how a 0
NAND gate operation can be constructed with transistors 1

or with a memory element. 1
Figure 3 is a simplistic graphical depiction of 0

connected gates that are formed after an algorithm is Disconnected Gates 0 Connected Gates
placed on a FGPA. An algorithm is encoded as a digital
design and mapped to a switching fabric made up of logic Figure 3. A graphical representation of mapping
cells. FPGAs are designed to emulate integrated circuits. digital circuit descriptions to FPGA fabric
If an algorithm is "synthesizable" and burned on a chip, it
can also be "simulated" in an FPGA. Traditionally, a processor executes computations on a

Any digital function can be mapped to an FPGA but fixed architecture. For an FPGA, the design of
developers have historically shown a preference for architecture is required before computations can be
integer- and bit-based operations. This is mainly due to executed. Hence, FPGA technology implies the use of
the limited size of the fabric, but this is changing. Since dedicated hardware for performing computations. The
the basic component of an FPGA is static RAM, process is similar to the design of an application specific
therefore, these devices roughly track the speed of SRAM integrated circuit (ASIC) with an important difference of
technology with clock speeds currently up to 500 MHz[6]. the reprogrammable functionality of FPGAs. However,

this flexibility of FPGAs results in a lower clock
frequency when compared to ASICs or processors.

NAND Gate Truth Table While the outlook for traditional CPUs into the future
x y z is a bit uncertain, the converse is true for FPGAs.

X - 0 0 1 DeHon's law is the analog of Moore's law that governs

Y 0 1 1 performance on reconfigurable chips[7 . It observes that
1 0 1 the computational capacity of reconfigurable hardware

grows at a rate roughly twice that of general-purposel 1 0CPUs.

We have provided many examples of where FPGAs
differ from traditional CPUs. CPUs essentially do one

Transistors Memory thing at a time, at very high clock speeds whereas FPGAs
can do a multitude of things, at a slower clock speed. The

address traditional CPU in use today follows the von Neumann
00 output sequential processing paradigm. That is, instructions are
01 fetched and executed and results are stored in a

output continuous sequential fashion. The fact that memory is
input a I1separate from the processing unit in this architecture leads

input b-- to a condition known as the von Neumann bottleneck;
these are the delays from reading and writing to main

input b memory. The addition of cache memory has been
promoted over the years to alleviate some of this forced-

Figure 2. NAND gate implementation with transistors wait, spin-idle time.
and with a memory unit FPGAs overcome these sequential barriers by

allowing circuit designers to operate both in space and
time. Algorithms are laid out in space on
reprogrammable hardware. Instruction-level parallelism
is the most obvious form of speedup resulting from this
capability. Multiple copies of the same computation can
be carried out simultaneously by unrolling or strip-mining
the heavily used loops in an algorithm. Incredibly deep

352

pipelines can also be formed for more step-wise -- sqrt8.vhdl unsigned integer sqrt 8-bits
operations. computing unsigned integer 4-bits

sqrt(00000100) = 0010 sqrt(4)=2
Speedup through other means is also possible on -- sqrt(01000000) = 1000 sqrt(64)=8

large FPGA fabrics. Separate tasks can be executed library IEEE;

concurrently with no data or time dependencies. There is use IEEE.std_logic_1164 .all;

also the potential for reduced latency as potentially large architecture circuits of Sm is

data structures can be laid out and maintained on lookup signal toll, till, t010, tool, tl00, td

tables in FPGA fabric vice tiered memory systems. Stall std logic;

cycles are removed along with the von Neumann begin -- circuits of Sm
toll <= (not x) and y and b;

bottleneck, essentially disappearing on the FPGA. till <= x and y and b;

t010 <= (not x) and y and (not b);

3.2. Development Environment tool <= (not x) and (not y) and b;
tl00 <= x and (not y) and (not b);
bo <= toll or till or t010 or tool;

FPGAs have a somewhat complex development td <= tlo0 or tool or tolo or till;

environment that is certainly different from the traditional d <= td when u='it' else x;

code development environment in the general community. end architecture circuits; -- of Sm

FPGAs are usually programmed using a Hardware Figure 4. Example VHDL code
Description Language (HDL). Two of the most prevalent
languages in use are VHSIC Hardware Description The next step involves compilaation and simulation
Language (VHDL) and Verilog. The two vary in their to verify the operations of a design. A simulator typically
approach to coding. While VHDL has a similar look and generates a waveform of signals within a design. After
feel to that of the Ada programming language and is the process of debugging and simulation, a design is
widely used in DoD-related efforts, Verilog has the look synthesized. During the process of synthesis, hardware
and feel of the C programming language. A small piece of description language code is translated into a network of
example VHDL code is given in Figure 4. logic gates. Depending on the complexity and size, a

Hardware description languages are concurrent and synthesis process can take hours to days to complete.
parallel languages. In a concurrent language Designing an application for an FPGA using HDL
environment, the order of statements is irrelevant because requires a prerequisite knowledge of digital logic and
a code is not executed line by line. A code written in circuit theory, however, high-level languages, similar to
VHDL or Verilog, attempts to describe the architecture the programming language C, are being introduced as a
and interconnects of a hardware system, creating the substitute for HDL. In this methodology, a designer is
hardware description language. allowed to write a code resembling a high-level language

The development cycle for FPGA software is also in syntax and format. Then, the code is compiled to
different from those found in traditional software produce the corresponding hardware counterparts in
engineering for generic processors. First, parallel VHDL or Verilog.
algorithms require a slightly different focus from One such language is from Celoxica and is called
designers who are used to thinking sequentially. Even Handel-C. Handel-C is a C-like language that follows the
current parallel programming paradigms, such as ANSI-C syntax and semantics with extensions and
message-passing, do not map well to the underlying restrictions to specify hardware design. It is designed to
structure of the language. Rather, for those familiar with produce efficient hardware, provides for synchronization,
parallel models, it is similar to the Parallel Random and allows one to use arbitrary word widths. Key to the
Access Machine or the implied Single Instruction Handel-C approach is the par statement that expresses
Multiple Data model [81. That is, all processors are what should happen in parallel. Figure 5 shows example
executing the same instruction during the same time slice code with the serial, 4-cycle block shown in (a) as
but using potentially different data streams. compared to the same code in (b) that can execute in

parallel in 1 cycle using the par construct.
Another language is from Mitrionics called Mitrion-

C. Mitrion-C has its own syntax and takes an algorithmic
description approacht 9 . Moreover, Mitrion-C is a fully
parallel programming language similar to hardware
description languages. The code in Mitrion-C is targeted
for the highly configurable Mitrion virtual processor,
which gets programmed into an FPGA. This approach
simplifies the compiler's work. Currently, the virtual

353

.processors have a fixed clock frequency set at 100 MHz. However, there is no reason to stop at single FPGAs
Also, Mitrionics provides support for the Cray XD1 to solve difficult problems. Recently there has been a
architecture by removing the user's responsibility of push to extend the viability of FPGA-based solutions into
having to of implement the core interface components. the parallel world. HPC systems with FPGAs are being

fielded in the DoD High Performance Computing
II4 clock cycles /1 clock cycle Modernization Program. Several Cray XD1 systems are

{ par { available with clusters of over 100 FPGA processors.
i= 0; i = 0; These machines will be used by the authors to investigate
a = 1; a = 1; the use of coupled commodity clusters and FPGA devices
b = 23; b = 23; in a parallel system.
c = 99; c = 99; According to Cray, one of the three main obstacles to

the adoption of reconfigurable computing is Peripheral

(a) Standard C syntax (b) Handel-C code Component Interconnect (PCI) bus bottlenecks or data
serial code. representing a parallel starvation to the FPGA (the other two being job

region. scheduling and programmability) [1"]. Indeed data
starvation is a problem in some FPGA cases where

Figure 5. Standard C serial code versus Handel-C traditional bus speeds through PCI connections are
parallel constructs lacking. Cray has implemented a proprietary system

known as RapidArray to connect the compute processors
developmentaproa.Nallatech hrohigel F A ato the FPGAs over high bandwidth, low-latency links. In

developmentaroach. Nadatechpri iMe-C an the personal computer or workstation market, vendors are
DIMETalk environment to a developer with interest in moving to PCI-Express solutions for FPGAs. Currently,
programming FPGA devices. DIME-C compiles and moigt CExrssluonfrFP s.urely
programmn FPA devices DM- complgorim ile an d the majority of boards offer Peripheral Component
generates VHDL output of an algorithm written in DIME- Interconnect Extended (PCI-X) solutions to improve
C, which is a subset of standard C. An advantage of using bandwidth between an FPGA and a processor. This is an
DIME-C is that a user only needs to learn the C intermediate step prior to full PCI-Express support.

statements that are supported in DIME-C. DIMETalk

provides an abstraction of the PCI-X interface, translating 4.2. Application Areas
its communication channel in a form of a network.
Communication and control of the FPGA design is
accomplished through Nallatech's Field Upgradeable Whether it be one FPGA or hundreds connected in a

Systems Environment application programming interface cluster, it is safe to say that all but the simplest

(API) function calls executing on a host side. applications will involve some combination of generic
processors operating in conjunction with FPGA hardware.
Approaching computation-intensive programs for

4. Reconfigurable Computing in Practice optimization is already handled in this fashion. Here,
researchers generally look for a 90/10 rule in their code

For all but the most simplistic circuit designs, FPGAs that is surprisingly common across domains. The 90/10
will act together with traditional CPUs to form a rule states that roughly 90% of the total execution time of
heterogeneous, reconfigurable architecture for the next a piece of software resides in only 10% or less of the total
generation of parallel computers. The most compute- source lines of code. This 90/10 offloading rule will be
intensive segments of software will be offloaded to an the fastest way to identify what code segments could
optimized architecture of FPGAs for hardware possibly be shipped to the FPGA for fast execution.
acceleration. There should be no shortage of possible application areas.

Often researchers, when first encountering FPGAs,
4.1. Hardware Systems are hesitant to investigate their use, due to the low clock

speeds associated with the devices. The low clock speed

Desktop solutions with FPGAs are already available is often misleading but does provide some insight on what

for a host of problems. The traditional areas where application might be appropriate to target for FPGAs. For

custom-built FPGA hardware accelerated computing is example, consider a CPU at 4 GHz versus an FPGA

making an impact include signal and image processing, clocking at 400 MIHz. Assume that the CPU takes one

software-defined radio, aerospace, bioinformatics, and cycle to produce an interesting result. One can easily see

cryptography. Large-scale speedups can already be seen that it would take an array of 10 Processing Elements

on applications running on single FPGAs in these areas. (PEs) in the FPGA fabric to match the performance of the

A factor of a 100 speedup is not uncommon in open CPU. Of course, it usually takes well over one cycle for a

literature. CPU to produce an interesting result. It must serially read

354

the data from memory and write any results back. Other schedule. A time consuming key schedule process makes
overheads such as the incrementing of induction variables Blowfish an ideal hash function candidate for password
on loops and associated loop overhead for branch and authentication. Although Blowfish is known as a block
bound easily add to the clock quantum to produce cipher, the algorithm supports a hash operation by using a
interesting results. Overall, with today's technology, a 10 user key as an input, ranging from 32-448 bits and getting
PE rule of thumb helps to determine viable FPGA a fixed 64 bit output.
applications.

6.2. VHDL Hardware Design
5. Technology Evaluation

For Blowfish, hardware structure and design choices

To evaluate the use of FPGAs for the Army, we are depend strongly on the intended purpose of the algorithm.

focusing on two distinct application areas. The first deals Consider a standard execution of encryption and

with integer and bit-based computing technology. Here decryption functions with constant secret key for a set of

we will be targeting encryption algorithms, steganalysis, data. In this case, a pipeline structure enhances efficiency

and data mining for intrusion monitoring and protection. and throughput where a predetermined secret key

The ability to hide and encode messages using standard maintains the key-dependent S-boxes constant at every

encryption and ciphers is a major problem for Army level of the pipeline. The opposite is true when the

intelligence. Furthermore, the sheer size of data collected algorithm is used with the intention of performing a brute

on network traffic sensors is overwhelming. The task of force attack. With an objective to determine an unknown

mining this data to uncover a potential computer security user key, the attack continuously guesses a different

breach is extremely time-consuming using conventional secret key. Accordingly, S-boxes must be recalculated for

computing. each particular key under examination. Due to key and S-

The power of FPGAs to directly tackle these box dependency, S-boxes are not predefimed identical

problems with incredible speedup is the major drawing lookup tables, but a changing entity. Unlike the process

force. We will be working with the Army Research of encrypting or decrypting messages, key recovery of

Laboratory's Center for Intrusion Monitoring and Blowfish spends a majority of its time pre-computing key

Protection to identify applications for studying FPGA and S-boxes. This pre-processing is equivalent to

utility in data mining. We have already identified the encrypting 4,168 bytes of text.

"Blowfish" encryption code as a first-cut in analyzing
FPGAs in single and parallel mode against standard --o

implementations of this algorithm on commodity chips.
We will move into steganalysis upon completion of these
initial efforts.

The second main focus area will be on floating-point
intensive applications. Currently, we are targeting a CONTROL T
Classical or Quantum Monte Carlo (QMC) algorithm to

implement in hardware to compare against computers _
having reported high FLOP-rate capabilities. QMC is a
good candidate for several reasons. First, it is broadly
representative of scientific computing algorithms.
Second, its structure, which allows fine and coarse grain
parallelization, pipelining, and calculation with integer or
fixed point data representation makes it a sound fit for
FPGAs. Finally, QMC is very time-consuming and can I RGSE

easily take advantage of savings from hardware
acceleration with incredible impact.

6. Application Design

6.1. Encryption Algorithm Figure 6. Top-level Blowfish architecture

The major elements of the hardware design consist of
The Blowfish algorithm is a fast symmetric block S-box, datapath, key register, and control. The design

cipher [113. Unique and notable features of Blowfish layout is shown in Figure 6. The specifications for the S-
include key dependent S-boxes and a highly complex key box are 32-bit output with 8-bit address inputs. During

355

preprocessing, the data path generates 64-bit output to 6.4. Hardware Issues
replace previous values of S-box. Since a standard 32-bit
RAM unit does not support writing in 64-bit within one The size of hardware for the Blowfish algorithm
cycle, two 32-bit S-boxes with a multiplexer controlled demanded large resources to implement, especially S-
output are used to support an optimal 64-bit load. The boxes for sixteen rounds of Blowfish. Each S-box
seven most significant bits of the address are applied to contains 256 entries, each entry storing a 32-bit value.
both S-boxes and the least significant bit is connected to For sixteen rounds of the Blowfish algorithm, there are
the select signal of the multiplexer. Basically, a 32-bit S- total of 64 S-boxes. Instead, a reduced version of one
box capable of storing 256 entries is substituted with two round was designed. This hardware is then reused to
32-bit S-boxes each holding 128 entries, as shown in implement the 16 rounds of the Blowfish algorithm.
Figure 7. The preprocessing stage assigns new values for As previously discussed, mapping S-boxes to
all data within the S-boxes which equals to a total of configurable logic blocks of an FPGA locks up large
1,024 entries. The impact of S-box loading capability is amount of FPGA resources. An alternative option would
significant. With the ability to load 64-bit values in one be to use the block RAMs, which are dedicated on-chip
clock cycle, the S-box write operation completes in 512 RAM modules within the FPGA. The downside of using
cycles. As for the 32-bit data loading per cycle, write block RAM is that it only allows one write per cycle,
operation would require 1,024 cycles, which slows down the loading of initial hex values of

"pi". Another disadvantage of block RAM is the

S BOX 0 synchronous read characteristic: the output of the S-box
appears one clock cycle after an input is applied. Thus,

addr 8 computing 16 rounds takes 17 clock cycles for the block
RAM design. Additionally, key register values and
necessary control signals must be stored and forwarded to
the next clock cycle due to the one cycle delay of a block

data in a SBOXA- SBOX B RAM. Figure 8 describes the timing relating to S-boxes
mapped to block RAMs.

datain 3 Idat L key
32

data ina32 32

CYCLE 0 Od.R

32

S box out

Figure 7. Optimized S-box design
CYCLEI ADE

6.3. VHDL Simulation

During simulation, the current state of S-boxes,
output of registers, and the value of the signals at various

stages need to be checked and verified with the correct --
values. Intermediate results are an essential element
during the debugging process of a hardware design.
Intermediate values were retrieved from the Blowfish
code written in standard C. ModelSim, an HDL
simulator, produces a window displaying waveforms that Figure 8. Timing of dataflow
represent the inner values of the hardware design. These
waveforms were analyzed and compared with the The number of clock cycles needed to complete a one
expected values obtained from the C code for validation, key test of Blowfish algorithm is composed of: the secret

key load, pre-processing, and encryption/decryption. The
time required for loading secret key depends on the input
and output (I/O) specification. For example, 64-bit 110
for a secret key needs 9 clock cycles to finish loading a

356

512-bit key register. A separate exclusive-OR cycle is not Each of previously described steps can be
necessary because input of a secret key is applied to an accomplished in many different ways. For instance, a
exclusive-OR before being latched into the key register. design of hardware can be done using VHDL, Verilog,
Preprocessing is divided into "pi" initialization, key DIME-C, Mitrion-C, or Handel-C to name just a few. In
register setup, and S-box setup. Total number of clock addition, the architecture and interface cores differ with
cycles for VHDL design equals 9,012, which is each company along with corresponding API functions.
summarized in Table 1. Thus, the lack of a dominant standard within FPGA

community imposes challenges for effectively utilizing
Table 1. Required Clock Cycles FPGA technology.

operation Clock Cycles 6.6. Synthesis and Performance Results

...... S ecret K ey Load 9
Pi Initialization 129 The Blowfish algorithm was written following the
Key Register Setup 153 imposed rules of DIME-C. DIME-C does not support
S b x Setu 8704 pointers and the concept of call by reference. V alues
Encryption/Decryption 17 passed as function arguments will be modified instead of

Total 9012 a copy being created. Since DIME-C is a subset of ANSI
C, debugging can be performed using a standard GNU

The entries for S-boxes are key dependent such that compiler. For debugging and simulating DIME-C code,
original values are replaced with a new value derived the design was wrapped around a main function which
from a secret key. For the purposes of performing a key was responsible for providing the inputs.
attack, the pipeline is of no use due to the key dependent In order to generate a binary file to program a FPGA,
nature. Every pipeline stage would require different S- DIME-C code is translated into VHDL and imported into
box values, which translate to different hardware for each a DIMETalk network. At minimum, a DIMETalk
stage. Recall that preprocessing of S-boxes is a major network consists of a PCI-X interface, clock driver,
portion of computation for Blowfish key attack. Defining memory block, and a user hardware component. After the
16 rounds of execution to be 1 run of Blowfish algorithm, creation of a network, DIMETalk synthesizes the design,
encryption takes 1 run, and total pre-processing takes 521 translating VHDL code into logic gates, and builds a
runs, which equals to about 99.8% of time spent on the binary file. When this build process completes, the area
pre-computing step. Therefore, a method more aligned and delay results along with sample host API file are
with the key attack would be to use a single stage of placed under the current working folder. A sample API
Blowfish and to parallelize by duplicating processing host file performs basic hardware tests, board reset, binary
units as permitted by available area. Here, the multiple file programming, and execution of the design. The
single round designs are each reused iteratively to achieve synthesis results of the Blowfish algorithm, designed in
a similar effect of a pipeline with a startup I/O limitation. VHDL and DIME-C for Virtex-4 LX 100, are summarized

in Table 2.
6.5. FPGA Development Flow Table 2. Virtex-4 LXI 00 Utilization Summary

The overview procedure for programming FPGAs Percentage
can be broken down into three tasks: the hardware Used Used
design, the FPGA interface, and the host program. The VHDL Slices 3273 6%
hardware design refers to the process of designing an BRAM 40 16%
ap p lication in h ard w are . T rad ition ally , d esign ers u se D i E c..7 i

appictio i hrdwre Tadiioall, esgnes seDIME-C Slices 13715 27%
HDLs, but compilers are being introduced that translate a BRAM 52 21%
code written in a high-level language to a code in a
hardware language format. Secondly, the user application Table 3 lists the measured execution time of a
must be connected to architecture specific interface tabe 3 l ist th m eon tim of
devices for FPGA communications with its software version running on ainterconnected components. Interface core components microprocessor and hardware versions running on a
intronecmetd compoents nc tfa cotrea, o te, Virtex-4 FPGA using VHDL and DIME-C languages.
provide a method and functionality to control, read, write, Execution time reflects the amount of time required to
and monitor an FPGA. Finally, a host program is written hash one key value using the Blowfish algorithm. DIME-
in standard C with vendor specific API functions to load C design is much slower than both VHDL and software
and execute the hardware design on an FPGA device. versions. However, the core of the Blowfish algorithm is

mostly involved with data dependent functions resulting

357

in highly sequential operations, allowing little room for Laboratory who assisted in arranging various FPGA-
hardware optimizations. In addition, the area of the related training events.
FPGA fabric was not fully utilized, which can achieve
faster execution by duplicating identical hardware units. References

Table 3. Performance Comparison 1. Carriero, N. and D. Gelernter, How to Write Parallel
Programs. A First Course, The MIT Press, Cambridge, MA, p.

Clock Frequency Execution Time 5, 1992.
ANSI C 3.0 GHz 54 us 2. HPCWire, "HPCS Languages Move Forward." Aug. 2006;
VHDL 84 MHz 90 us http://www.hpcwire.com/hpc/827250.html.
DIME-C 53 MHz 2300 us 3. Post, D., "The Coming Crisis in Computational Science."

Proc. of the IEEE Int'l Conf on High Performance Computer

7. Conclusion Architecture: Workshop of Productivity and Performance in
High-End Computing, Madrid, Spain, 2004.
4. Meyer, R., "Emerging Multi-core Realities." Scientific

The HPC community is currently facing a capability Computing, Aug. 2006.
gap that is only going to get worse. There are numerous 5. Wikipedia, "Reconfigurable computing." Sep. 2006;
hardware and software development challenges that lie http://en.wikipedia.org/wiki/ Reconfigurable Computing.
ahead as we attempt to construct larger computer systems 6. Fernando, J., "Using FPGAs in High Performance
to focus on computational science applications to key Computing." Ohio Supercomputing Center, Lecture at Naval
Army requirements. Reconfigurable computing holds the Research Laboratory, 2006.
promise of a solution, but it will take a substantial effort 7. DeHon, A., "The Density Advantage of Configurable
to reach maturity. Within the next three to four years we Computing." IEEE Computer, vol. 33, no. 4, pp. 41-49, 2000.
foresee more focus on this methodology with success 8. JaJa, J., An Introduction to Parallel Algorithms, Addison-
stories coming from the many modeling and simulation Wesley Publishing Company, 1992.
codes currently running on commodity clusters.e c9. Tripp, J., M. Gokhule, and K. Peterson, "Trident: From High-

Level Language to Hardware Circuitry." Computer, vol. 40, no.
Acknowledgements 3, pp. 28-37, 2007.

10. Cray Inc., "Cray XD1 Supercomputer for Reconfigurable
The authors wish to thank those individuals from the Computing", 2005.

User Productivity Enhancement and Technology Transfer 11. Schneier, B., "Description of a New Variable-Length Key,
Program of the DoD High Performance Computing 64-Bit Block Cipher (Blowfish)." Fast Software Encryption,

Modernization Program and the Naval Research Cambridge Security Workshop Proceedings, Springer-Verlag,
pp. 191-204, 1994.

358

